A knot bounding a grope of class n is ⌈n ∗ 2⌉- trivial
نویسنده
چکیده
In this article it is proven that if a knot, K, bounds an imbedded grope of class n, then the knot is ⌈ 2 ⌉-trivial in the sense of Gusarov and Stanford. That is, all type ⌈ 2 ⌉ invariants vanish on K. We also give a simple way to construct all knots bounding a grope of a given class. It is further shown that this result is optimal in the sense that for any n there exist gropes which are not ⌈ 2 ⌉+1trivial.
منابع مشابه
3 0 Ju l 1 99 9 A knot bounding a grope of class n is ⌈ n 2 ⌉ - trivial ∗
In this article it is proven that if a knot, K, bounds an imbedded grope of class n, then the knot is ⌈ 2 ⌉-trivial in the sense of Gusarov and Stanford. That is, all type ⌈ 2 ⌉ invariants vanish on K. We also give a simple way to construct all knots bounding a grope of a given class. It is further shown that this result is optimal in the sense that for any n there exist gropes which are not ⌈ ...
متن کاملNon-triviality of the Cochran-orr-teichner Filtration of the Knot Concordance Group
We establish nontriviality results for certain filtrations of the smooth and topological knot concordance groups. First, as regards the n-solvable filtration of the topological knot concordance group, C, defined by K. Orr, P. Teichner and the first author [COT1]: 0 ⊂ · · · ⊂ F(n.5) ⊂ F(n) ⊂ · · · ⊂ F(1.5) ⊂ F(1.0) ⊂ F(0.5) ⊂ F(0) ⊂ C, we refine the recent nontriviality results of Cochran and Te...
متن کاملGrope Cobordism and Feynman Diagrams
We explain how the usual algebras of Feynman diagrams behave under the grope degree introduced in [CT]. We show that the Kontsevich integral rationally classifies grope cobordisms of knots in 3-space when the “class” is used to organize gropes. This implies that the grope cobordism equivalence relations are highly nontrivial in dimension 3. We also show that the class is not a useful organizing...
متن کاملGrope Cobordism of Classical Knots
Motivated by the lower central series of a group, we define the notion of a grope cobordism between two knots in a 3-manifold. Just like an iterated group commutator, each grope cobordism has a type that can be described by a rooted unitrivalent tree. By filtering these trees in different ways, we show how the Goussarov-Habiro approach to finite type invariants of knots is closely related to ou...
متن کاملHigher-order Alexander Invariants and Filtrations of the Knot Concordance Group
We establish certain “nontriviality” results for several filtrations of the smooth and topological knot concordance groups. First, as regards the n-solvable filtration of the topological knot concordance group, C, defined by K. Orr, P. Teichner and the first author: 0 ⊂ · · · ⊂ F(n.5) ⊂ F(n) ⊂ · · · ⊂ F(1.5) ⊂ F(1.0) ⊂ F(0.5) ⊂ F(0) ⊂ C, we refine the recent nontriviality results of Cochran and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008