A knot bounding a grope of class n is ⌈n ∗ 2⌉- trivial

نویسنده

  • James Conant
چکیده

In this article it is proven that if a knot, K, bounds an imbedded grope of class n, then the knot is ⌈ 2 ⌉-trivial in the sense of Gusarov and Stanford. That is, all type ⌈ 2 ⌉ invariants vanish on K. We also give a simple way to construct all knots bounding a grope of a given class. It is further shown that this result is optimal in the sense that for any n there exist gropes which are not ⌈ 2 ⌉+1trivial.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3 0 Ju l 1 99 9 A knot bounding a grope of class n is ⌈ n 2 ⌉ - trivial ∗

In this article it is proven that if a knot, K, bounds an imbedded grope of class n, then the knot is ⌈ 2 ⌉-trivial in the sense of Gusarov and Stanford. That is, all type ⌈ 2 ⌉ invariants vanish on K. We also give a simple way to construct all knots bounding a grope of a given class. It is further shown that this result is optimal in the sense that for any n there exist gropes which are not ⌈ ...

متن کامل

Non-triviality of the Cochran-orr-teichner Filtration of the Knot Concordance Group

We establish nontriviality results for certain filtrations of the smooth and topological knot concordance groups. First, as regards the n-solvable filtration of the topological knot concordance group, C, defined by K. Orr, P. Teichner and the first author [COT1]: 0 ⊂ · · · ⊂ F(n.5) ⊂ F(n) ⊂ · · · ⊂ F(1.5) ⊂ F(1.0) ⊂ F(0.5) ⊂ F(0) ⊂ C, we refine the recent nontriviality results of Cochran and Te...

متن کامل

Grope Cobordism and Feynman Diagrams

We explain how the usual algebras of Feynman diagrams behave under the grope degree introduced in [CT]. We show that the Kontsevich integral rationally classifies grope cobordisms of knots in 3-space when the “class” is used to organize gropes. This implies that the grope cobordism equivalence relations are highly nontrivial in dimension 3. We also show that the class is not a useful organizing...

متن کامل

Grope Cobordism of Classical Knots

Motivated by the lower central series of a group, we define the notion of a grope cobordism between two knots in a 3-manifold. Just like an iterated group commutator, each grope cobordism has a type that can be described by a rooted unitrivalent tree. By filtering these trees in different ways, we show how the Goussarov-Habiro approach to finite type invariants of knots is closely related to ou...

متن کامل

Higher-order Alexander Invariants and Filtrations of the Knot Concordance Group

We establish certain “nontriviality” results for several filtrations of the smooth and topological knot concordance groups. First, as regards the n-solvable filtration of the topological knot concordance group, C, defined by K. Orr, P. Teichner and the first author: 0 ⊂ · · · ⊂ F(n.5) ⊂ F(n) ⊂ · · · ⊂ F(1.5) ⊂ F(1.0) ⊂ F(0.5) ⊂ F(0) ⊂ C, we refine the recent nontriviality results of Cochran and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008